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Propagation Characteristics of a
Heaviside Absorbing Layer for TLM

Ian G. Gosling,Senior Member, IEEE,and Pingyu Qu

Abstract—The perfectly matched layer for use with the finite-
difference time-domain method is adapted to our transmission-
line matrix simulation as what we call a heaviside absorbing layer
(HAL). It is shown that the reflection coefficient for the wave
incident on a HAL is less than that of the wave incident on a
matched-load termination at all angles of incidence. Furthermore,
the dispersion relation of a transmission-line matrix mesh of a
symmetrical condensed node with both electric and magnetic loss
stubs is derived. It provides guidance on how to choose the losses
of HAL and other simulation parameters properly.

Index Terms—TLM, absorbing boundary.

I. INTRODUCTION

T HE TRANSMISSION-LINE matrix (TLM) method has
been successfully applied to solve electromagnetic wave

propagation, scattering, and diffraction problems in the time
domain. In order to truncate the computation region and avoid
unwanted nonphysical reflection, an absorbing boundary is
needed. Several absorbing boundary conditions have been pro-
posed [1]–[3]. For the TLM mesh of symmetrical condensed
nodes (SCN) the absorbing boundary is usually realized by
terminating the link lines at the edge of the mesh in their
own characteristic impedance, so that the incident waves are
absorbed completely. However, it is shown in [4] that this
absorbing boundary only works for the wave at 0angle of
incidence to the boundary. For other angles of incidence, large
unwanted reflections still exist. Some improvements have been
made in [4] and [5].

Recently, the so-called perfectly matched layer (PML) ab-
sorbing boundary condition was mentioned [6] for use with
the finite-difference time-domain (FDTD) method. One of
the important characteristics of PML is that it possesses
both electric loss and magnetic loss restricted by the
condition

(1)

In [6] it was shown that for a certain frequency range, the
reflection coefficient of a PML of 20-cells thick can be as
low as 60 dB.

A so-called heaviside absorbing layer (HAL) is presented
in this paper for use with the TLM method. The HAL consists
of a physically unrealizable medium with , and
both and , satisfying (1). In Section II, the characteristic
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Fig. 1. Equivalent circuit for the wave traveling along a lossy TLM mesh
axis.

parameters of a HAL are presented. Then, the reflection
coefficient for the wave incident in a HAL is calculated using
Maxwell’s equations and boundary conditions. In Section IV,
the dispersion properties of a TLM mesh of SCN with loss
stubs are analyzed. The method is applied to a HAL. Finally,
the analytical results are verified by computer simulation using
our lossy TLM code.

II. CHARACTERISTICS OF AHAL

In a source-free, infinite HAL region, two of Maxwell’s
equations are

(2)

(3)

Thus, follows the Helmholtz equation:

(4)

For a TEM plane wave traveling in a HAL, we have

(5)

(6)

where and are the propagation constant and intrinsic
impedance for the TEM wave traveling in an infinite HAL
region, respectively, and is the intrinsic impedance of
free space. From (5) and (6) it can be seen that the intrinsic
impedance and phase constant in the HAL are the same as
those of free space.

To model the lossy medium with both electric loss and
magnetic loss , an SCN formulation was developed with
six more stubs added to Johns’ original node, three to model
electric loss and three to model magnetic loss. For the wave
traveling along the mesh axis, e.g., thedirection, over one
TLM SCN cell, the equivalent circuit is drawn in Fig. 1, where

, are the total capacitance and inductance and, are
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Fig. 2. Variation of� with �e=!�0.

admittance and resistance per unit length representing electric
loss and magnetic loss, respectively.

According to the transmission-line theory in [7]:

(7)

(8)

where is the cell dimension along the direction. By using
the equivalence in [8] and [9], and equal mesh spacing in
all three dimensions, a heaviside transmission line having

is obtained.

III. HAL A BSORBING CONDITION

The absorbing properties of the HAL are studied by cal-
culating the reflection coefficient of a plane-wave incident
from free space into a semi-infinite HAL medium.

Consider a wave incident at an angle from free space
on to a semi-infinite HAL medium. From (2) and (3), the
equivalent complex permittivity and permeability of the HAL
medium are

(9)

Hence, the refractive index of the HAL is given by

(10)

From [10] and [11], the reflection coefficient in the case of
parallel polarization is

(11)

and in the case of perpendicular polarization is

(12)

The complex angle of transmission is found from Snell’s
law:

(13)

Fig. 3. Two nodes used in dispersion analysis.

which, from above, can be rewritten as

(14)

The variation of with loss tangent is shown in
Fig. 2. As a comparison, the reflection coefficient of a
plane-wave incident on a matched-load terminated TLM mesh
is also presented. It can be seen thatis about 30 dB less
than for angles of incidence between 0and 40 when

. The higher the frequency and the smaller the
losses, the smaller will be.

IV. DISPERSIONPROPERTIES OFHAL

A. Dispersion Relation of TLM SCN with Loss Stubs

It is reasonable to assume that the dispersion properties of
SCN without loss stubs will be changed when extra loss stubs
are introduced. Thus, in order to further verify the reduction of
reflection using our lossy TLM code, it is necessary to analyze
the dispersion properties of the HAL so that the simulation
parameters can be chosen properly.

The dispersion analysis of general SCN with both electric
and magnetic loss stubs is conducted following the method
in [12]. Two nodes are considered in the dispersion analysis.
One is the conventional symmetrical condensed node, denoted
as node . The other is a conglomerate nodecomposed of
six adjacent nodes surrounding(Fig. 3). The formulation in
[12] is based on the separation of V’s at nodein open or
short stubs and the contributions of 12 link lines. However,
in our case there are 24 V’s in the reflected V vector, i.e., 12
for link lines, six for open or short stubs, and another six for
electric or magnetic loss stubs. The dimension of the incident
V vector remains at 18 1 since there are no incident waves
from the terminated ends of the loss stubs. Thus, the useful
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scattering matrix is 24 18 and the submatrices are different.
At an arbitrary moment :

(15)

where superscriptsand represent incident and reflected V,
respectively, subscripts, and , stand for dielectric stubs
and loss stubs, respectively, at node. The original scattering
matrix has been divided into six submatrices:(12 12);

(12 6); (6 12); (6 6); (6 12); and (6 6).
After some manipulation similar to [12], the relation be-

tween incident V’s and reflected V’s in the link lines is found
to be

(16)

where is a 6 6 diagonal matrix with
and , , being

the 6 6 identity matrix and is the 6 6 matrix:

(17)

Besides (16), two more important relations are used in our
analysis:

1) propagation between adjacent nodes:

(18)

where is a 12 12 diagonal matrix whose nonzero
elements are for ;

2) Floquet’s theorem. For a TLM SCN mesh with loss
stubs, will no longer be a pure imaginary number but
rather a complex one, accounting for the damping effect
of losses:

(19)

where is 12 12 matrix whose nonzero elements are

(20)

where , , and are the components of the plane-
wave propagation constants in a lossy TLM mesh.

A dispersion relation similar to that in [12] is derived for
a lossy SCN with uniform mesh spacing by combining (16),
(18), and (19):

(21)

Equation (21) is solved using algebraic solver software
for pointing along three typical directions (1, 0, 0), (1,
1, 0) and (1, 1, 1). In the ideal dispersionless case, all the
frequency components of a plane wave propagating in the

Fig. 4. Variation of��l=R with�l=� for several cases ofR along (1, 0, 0).

Fig. 5. Variation ofvp=c with �l=� for several cases ofR along (1, 0, 0).

Fig. 6. Cutoff frequency variation withR.

HAL should have phase velocity , the speed of
light, and the same attenuation constant . Thus, the
dispersion properties of HAL can be represented in terms of
the frequency-dependent phase velocitiesnormalized by
and the frequency-dependent attenuation per-space step
normalized by .

B. Dispersion Along Direction (1, 0, 0)

The dispersion properties along (1, 0, 0) are derived by
assuming any two of the three propagation constants along
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Fig. 7. Variation of��l=R with�l=� for several cases ofR along (1, 1, 0).

Fig. 8. Variation ofvp=c with �l=� for several cases ofR along (1, 1, 0).

the axes in (21) to be zero. The results are shown in Figs. 4
and 5 for several cases of. Several important conclusions
can be reached.

• The dispersion properties of the HAL are dependent on
rather than alone.

• For a HAL with small , apart from the attenuation
introduced by the loss, the dispersion properties of the
mesh are similar to those without loss stubs, i.e.,
and no cutoff frequency due to mesh spacing.

• As increases, decreases. Above a cutoff frequency,
the wave becomes a nonphysical backward wave. (This
is not the same cutoff frequency as that due to the
mesh spacing.) Fig. 6 shows the variation of this cutoff
frequency with . It can be seen that it decreases with

, becoming zero when .

C. Dispersion Along Direction (1, 1, 0)

In this case, one of the propagation constants is assumed to
be zero and the two others are assumed to be equal in (21).
The variation of and with frequency is shown in
Figs. 7 and 8 for several cases of. The behavior is similar
to that of the (1, 0, 0) direction except for the following.

• The cutoff frequency, where the physical wave solution
becomes a backward wave, approaches zero at .
The change of cutoff frequency with is also shown in
Fig. 6.

Fig. 9. Variation of��l=R with�l=� for several cases ofR along (1, 1, 1).

Fig. 10. Variation ofvp=c with �l=� for several cases ofR along (1, 1, 1).

• There exists two solutions to (21). One is the physical
mode and the other is the spurious mode. In Figs. 7 and
8, both modes are shown for the case when .

D. Dispersion Along Direction (1, 1, 1)

In this case, all of the three propagation constants are
assumed to be equal in (21). The variation of and

with frequency is shown in Figs. 9 and 10 for several
cases of . The following comments can be made.

• The cutoff frequency approaches zero at . Unlike
the (1, 0, 0) and (1, 1, 0) directions, in which the cutoff
frequency changes gradually with, the cutoff frequency
in (1, 1, 1) switches from 0.5 to 0 abruptly when
increases from 3.4 to 3.5, as shown in Fig. 6.

• There exist three solutions to (21). One of them is the
physical mode and the other two solutions are the spurious
modes. In Figs. 9 and 10, both modes are shown for the
case when .

V. SIMULATION RESULTS

A. TLM Simulation of Wave Dispersion

In order to verify the dispersion analysis presented in Sec-
tion IV, the propagation properties of a plane wave traveling
in a HAL along the three directions were examined by our
TLM simulation. For propagation along the (1, 0, 0) direction,
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Fig. 11. Line source radiation into free space with and without HAL
termination.

TABLE I
COMPARISON BETWEEN DISPERSIONANALYSIS AND

SIMULATION IN DIRECTION (1, 0, 0) WHEN R = 2:5

a plane wave traveling in a parallel plate waveguide was simu-
lated. For the (1, 1, 0) direction, the simulation was performed
by exciting a plane wave with proper field components along
the diagonal line of a two–dimensional (2-D) square region.
For the (1, 1, 1) direction, the simulation was done in a 60
60 60 cube in which a plane wave was stimulated properly
along the diagonal plane.

Both attenuation and that were measured in the simu-
lation fit very well with the above dispersion analysis for small
or large . The nonphysical mode predicted by the dispersion
analysis was also verified. For (1, 1, 0) and (1, 1, 1) directions,
only the physical mode was detected in the simulation output.
Table I lists both the simulation and the dispersion analysis
for along the (1, 0, 0) direction at several normalized
frequency points.

B. Application of HAL

The improvement in boundary absorption afforded by the
HAL was verified by the TLM simulation of a line source
radiating into free space in the cases with and without the
mesh terminated by HAL cells. From the dispersion analysis
we know that should not be set too large, in order to prevent
propagation of nonphysical modes. On the other hand,and
the thickness of the HAL cells should not be too small, so
that the wave can be attenuated effectively in the HAL and
reflection from the final boundary at the edge of the TLM
mesh will not be significant. Bearing this in mind, was
chosen as 0.015.

Fig. 12. Output field in the time domain with HAL termination.

Fig. 13. Output field in the time domain without HAL termination.

The excitation and output points are the same for both
sample cases, as shown in Fig. 11. A band-limited Gaussian
pulse is used as the excitation field. The waveform of the field

at the output point in the time domain for the two cases is
shown in Figs. 12 and 13, respectively. It can be clearly seen
that the reflection was improved when HAL was used.

VI. CONCLUSION

In this paper we have presented a new absorbing boundary,
HAL, for the use with the TLM method. The theoretical
analysis shows that the reflection coefficient for the wave
incident on a HAL is about 30 dB less than that of the
wave incident on a matched-load termination at incident angles
between 0 and 40 when . The dispersion
relation of a SCN TLM mesh with both electric and magnetic
loss stubs has been derived. The method is applied to analyze
the dispersion in the HAL and the results are compared
with the TLM simulation. It has been shown that there is
a cutoff frequency which decreases whenincreases, where
the physical propagation mode changes into a backward wave.
Beyond a certain limit of , a nonphysical propagation mode
will dominate. This suggests that we should not exceed a
certain value of frequency or of in the TLM simulation.
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